top of page
PHOTO-2022-07-25-18-27-40.jpg

   Nitrogen (N) is an essential macronutrient that supports life in all living beings as a fundamental constituent of biomolecules, such as proteins and nucleic acids. Our goal in this research line is to understand N assimilation and its metabolism as well as its dissimilation in Chlamydomonas reinhardtii. Regarding N assimilation, we are trying to understand the molecular networks underlying the hierarchical preferences of this alga for different N sources (ammonium > nitrate/nitrite > organic nitrogen). Ammonium represses the assimilation of both nitrate and organic forms. But also nitrate represses the assimilation of organic N. Part of our work is oriented toward the identification of new molecular players that regulate these hierarchical relationships.  

 

   We are also interested in understanding nitric oxide (NO) metabolism and nitrate/nitrite dissimilation (or denitrification). Nitrate flux toward its assimilation is the predominant pathway under optimal conditions in Chlamydomonas as well as in other eukaryotic organisms containing an assimilatory nitrate reductase (NR). However, NR can also interact with the Molybdoenzyme NOFNIR (NO Forming Nitrite Reductase, aka. ARC) and reduce nitrite to NO, which is a signal molecule involved in the regulation of a wide variety of cellular processes, including nitrogen assimilation. Although NR is the main NO source in photosynthetic organisms, our group is also studying other NO sources that could have a prominent role under specific environmental conditions. Related to NO degradation, our group has also identified enzymes responsible for NO scavenging (called truncated hemoglobins, THBs) that convert NO into nitrate. Altogether, these enzymes constitute the nitrate-nitrate cycle whose functionality under physiological conditions has been poorly studied. 

 

   Alternatively, NO can also be reduced to nitrous oxide (N2O), which is a potent greenhouse gas. N2O production and release are mainly mediated by two proteins with NO-reductase activity located in mitochondria (CYP55) and chloroplast (FLV). Our group is trying to understand the physiological condition in which N2O is produced and released and how its synthesis is regulated. This knowledge will be important to elucidate whether large-scale microalgal cultivation could represent a source of N2O under conditions used in industry. 

Chlamy picture.jpeg

Funding:

Screen Shot 2022-10-17 at 5.14.10 PM.png

Grants:

2021-2024: “Nitrogen Assimilation and Dissimilation: Toward Green Systems", funded by MINECO (PID2020-118398GB-I00 ), 180K € UCO (Spain). 

2022: "Bases moleculares de las emisiones del gas de efecto invernadero óxido nitroso en microalgas.", funded by UCO-FEDER funds (UCO-1381052), 39,7 K €, UCO, Spain

Publications related to this project (10 last years):

​

Bellido-Pedraza, C.M., Calatrava, V., Llamas, A., Fernández, E., Sanz-Luque, E., Galván, A. Nitrous Oxide Emissions from Nitrite Are Highly Dependent on Nitrate Reductase in the Microalga Chlamydomonas reinhardtii (2022) International Journal of Molecular Sciences, 23 (16), art. no. 9412 DOI: 10.3390/ijms23169412

Bellido-Pedraza, C.M., Calatrava, V., Sanz-Luque, E., Tejada-Jiménez, M., Llamas, Á., Plouviez, M., Guieysse, B., Fernández, E., Galván, A. Chlamydomonas reinhardtii, an algal model in the nitrogen cycle (2020) Plants, 9 (7), art. no. 903, pp. 1-14.  DOI:10.3390/plants9070903

Gómez-Osuna, A., Calatrava, V., Galván, A., Fernández, E., Llamas, A. Identification of the MAPK cascade and its relationship with nitrogen metabolism in the green alga Chlamydomonas reinhardtii (2020) International Journal of Molecular Sciences, 21 (10), art. no. 3417. DOI: 10.3390/ijms21103417

Tejada-Jimenez, M., Llamas, A., Galván, A., Fernández, E. Role of nitrate reductase in NO production in photosynthetic eukaryotes (2019) Plants, 8 (3), art. no. 56. DOI: 10.3390/plants8030056

Calatrava, V., Hom, E.F.Y., Llamas, Á., Fernández, E., Galván, A. Nitrogen scavenging from amino acids and peptides in the model alga Chlamydomonas reinhardtii. The role of extracellular L-amino oxidase (2019) Algal Research, 38, art. no. 101395. DOI: 10.1016/j.algal.2018.101395

Ariz, I., Boeckstaens, M., Gouveia, C., Martins, A.P., Sanz-Luque, E., Fernández, E., Soveral, G., Von Wirén, N., Marini, A.M., Aparicio-Tejo, P.M., Cruz, C. Nitrogen isotope signature evidences ammonium deprotonation as a common transport mechanism for the AMT-Mep-Rh protein superfamily (2018) Science Advances, 4 (9), art. no. eaar3599. DOI: 10.1126/sciadv.aar3599

González-Ballester, D., Sanz-Luque, E., Galván, A., Fernández, E., de Montaigu, A. Arginine is a component of the ammonium-CYG56 signalling cascade that represses genes of the nitrogen assimilation pathway in Chlamydomonas reinhardtii (2018) PLoS ONE, 13 (4), art. no. e0196167. DOI: 10.1371/journal.pone.0196167

Plouviez, M., Wheeler, D., Shilton, A., Packer, M.A., McLenachan, P.A., Sanz-Luque, E., Ocaña-Calahorro, F., Fernández, E., Guieysse, B. The biosynthesis of nitrous oxide in the green alga Chlamydomonas reinhardtii (2017) Plant Journal, 91 (1), pp. 45-56.  DOI: 10.1111/tpj.13544

Calatrava, V., Chamizo-Ampudia, A., Sanz-Luque, E., Ocaña-Calahorro, F., Llamas, A., Fernández, E., Galván, A. How Chlamydomonas handles nitrate and the nitric oxide cycle (2017) Journal of Experimental Botany, 68 (10), pp. 2593-2602.  DOI: 10.1093/jxb/erw507

Chamizo-Ampudia, A., Sanz-Luque, E., Llamas, A., Galván, A., Fernández, E. Nitrate Reductase Regulates Plant Nitric Oxide Homeostasis (2017) Trends in Plant Science, 22 (2), pp. 163-174. DOI: 10.1016/j.tplants.2016.12.001

Chamizo-Ampudia, A., Sanz-Luque, E., Llamas, Á., Ocaña-Calahorro, F., Mariscal, V., Carreras, A., Barroso, J.B., Galván, A., Fernández, E. A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas (2016) Plant Cell and Environment, 39 (10), pp. 2097-2107. DOI: 10.1111/pce.12739

Sanz-Luque, E., Ocaña-Calahorro, F., Galván, A., Fernández, E., de Montaigu, A. Characterization of a Mutant Deficient for Ammonium and Nitric Oxide Signalling in the Model System Chlamydomonas reinhardtii (2016) PLoS ONE, 11 (5), art. no. e0155128. DOI: 10.1371/journal.pone.0155128

Higuera, J.J., Calatrava, V., González, Z., Mariscal, V., Siverio, J.M., Fernández, E., Galván, A. NRT2.4 and NRT2.5 are two half-size transporters from the Chlamydomonas NRT2 family (2016) Agronomy, 6 (1), art. no. 20. DOI: 10.3390/agronomy6010020

Sanz-Luque, E., Chamizo-Ampudia, A., Llamas, A., Galván, A., Fernández, E. Understanding nitrate assimilation and its regulation in microalgae (2015) Frontiers in Plant Science, 6, art. no. 899. DOI: 10.3389/fpls.2015.00899

Sanz-Luque, E., Ocaña-Calahorro, F., De Montaigu, A., Chamizo-Ampudia, A., Llamas, A., Galván, A., Fernández, E. THB1, a truncated hemoglobin, modulates nitric oxide levels and nitrate reductase activity (2015) Plant Journal, 81 (3), pp. 467-479. DOI: 10.1111/tpj.12744

Sanz-Luque, E., Ocañna-Calahorro, F., Galván, A., Fernández, E. THB1 regulates nitrate reductase activity and THB1 and THB2 transcription differentially respond to NO and the nitrate/ammonium balance in Chlamydomonas (2015) Plant Signaling and Behavior, 10 (8), 4 p.  DOI: 10.1080/15592324.2015.1042638

Higuera, J.J., Fernández, E., Galván, A. Chlamydomonas NZF1, a tandem-repeated zinc finger factor involved in nitrate signalling by controlling the regulatory gene NIT2 (2014) Plant, Cell and Environment, 37 (9), pp. 2139-2150.  DOI: 10.1111/pce.12305

Remacle, C., Eppe, G., Coosemans, N., Fernández, E., Vigeolas, H. Combined intracellular nitrate and NIT2 effects on storage carbohydrate metabolism in Chlamydomonas (2014) Journal of Experimental Botany, 65 (1), pp. 23-33. DOI: 10.1093/jxb/ert339

Léran, S., Varala, K., Boyer, J.-C., Chiurazzi, M., Crawford, N., Daniel-Vedele, F., David, L., Dickstein, R., Fernández, E., Forde, B., Gassmann, W., Geiger, D., Gojon, A., Gong, J.-M., Halkier, B.A., Harris, J.M., Hedrich, R., Limami, A.M., Rentsch, D., Seo, M., Tsay, Y.-F., Zhang, M., Coruzzi, G., Lacombe, B. A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants (2014) Trends in Plant Science, 19 (1), pp. 5-9.  DOI: 10.1016/j.tplants.2013.08.008

Sanz-Luque, E., Ocaña-Calahorro, F., Llamas, A., Galván, A., Fernández, E. Nitric oxide controls nitrate and ammonium assimilation in Chlamydomonas reinhardtii (2013) Journal of Experimental Botany, 64 (11), pp. 3373-3383. DOI: 10.1093/jxb/ert175

bottom of page