
The nutrient molybdenum (Mo) is indispensable for nearly all known living organisms to accomplish important biological functions. Cells need to efficiently obtain and use Mo in order to ensure its presence in the active site of key enzymes such as nitrate reductase, sulfite oxidase, ARC, or nitrogenase. Mo is involved, among others, in nitrate assimilation, nitric oxide production, sulfite detoxification, or nitrogen fixation. However, little is known about Mo homeostasis in eukaryotic organisms. Nutrient homeostasis typically entails 1) strategies for nutrient uptake from soil, 2) nutrient storage, either by binding to other cell molecules, or by compartmentalization into cell organelles, 3) mechanisms for long-distance transport, to ensure nutrient supply to the whole plant, and 4) regulation mechanisms to coordinate intracellular nutrient content, environmental changes and cellular responses to those changes.
The unicellular green alga Chlamydomonas reinhardtii has been shown to be a good model to study Mo homeostasis since it has served to identify the first eukaryotic Mo uptake transporters.
Our goals are:
-
Identify the molecular mechanisms used by eukaryotes to ensure cellular Mo availability.
-
Use this knowledge to reduce nitrogen fertilizers in agriculture, either by optimizing plant inorganic nitrogen assimilation or by making possible nitrogen fixation in plants.
-
Improve our knowledge about Mo metabolism and its implication in human diseases.

Funding:



Grants:
2023-2025: Understanding molybdenum homeostasis for an efficient nitrogen fixation in non-legume plants. Consejería de Universidad, Investigación e Innovación. 154,4K €.
2021-2023: Molybdenum homeostasis efficiency in Chlamydomonas reinhardtii. Fundación Torres Gutiérrez. 28,8K €.
2020-2022: Mecanismos para la homeostasis de molibdeno en eucariotas. Consejería de Economía, Conocimiento, Empresas y Universidad. 73,8K €
Publications related to this project :
Viviana Escudero, Isidro Abreu, Manuel Tejada-Jiménez, Elena Rosa-Núñez, Julia Quintana, Rosa Isabel Prieto, Camille Larue, Jiangqi Wen, Julie Villanova, Kirankumar S Mysore, José M Argüello, Hiram Castillo-Michel, Juan Imperial, Manuel González-Guerrero*. Medicago truncatula Ferroportin2 mediates iron import into nodule symbiosomes (2020) New Phytol 228(1):194-209abb5351 doi: 10.1111/nph.16642.
Gil-Díez P, Tejada-Jiménez M*, León-Mediavilla J, Wen J, Mysore KS, Imperial J, González-Guerrero M*. MtMOT1.2 is responsible for molybdate supply to Medicago truncatula nodules (2019). Plant Cell Environ. Jan;42(1):310-320. doi: 10.1111/pce.13388
Tejada-Jiménez M*, Gil-Díez P, León-Mediavilla J, Wen J, Mysore KS, Imperial J, González-Guerrero M*. Medicago truncatula Molybdate Transporter type 1 (MtMOT1.3) is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency (2017) New Phytol. 2017 Dec;216(4):1223-1235. doi: 10.1111/nph.14739
Tejada-Jiménez, M., Galván, A., Fernández, E. Algae and humans share a molybdate transporter (2011) Proceedings of the National Academy of Sciences of the United States of America, 108 (16), pp. 6420-6425. DOI: 10.1073/pnas.1100700108
Tejada-Jiménez, M., Galván, A., Fernández, E., Llamas, A. Homeostasis of the micronutrients Ni, Mo and Cl with specific biochemical functions (2009) Current Opinion in Plant Biology, 12 (3), pp. 358-363. DOI: 10.1016/j.pbi.2009.04.012
Fischer, K.+, Llamas, A.+, Tejada-Jimenez, M.+, Schrader, N., Kuper, J., Ataya, F.S., Galván, A., Mendel, R.R., Fernández, E., Schwarz, G. Function and structure of the molybdenum cofactor carrier protein from Chlamydomonas reinhardtii (2006) Journal of Biological Chemistry, 281 (40), pp. 30186-30194. DOI: 10.1074/jbc.M603919200 (+ These authors contributed equally to this work)